当前位置: 首页 > 学术作品
A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing
时间:2021-09-08 17:21:14
分类:JACS
作品信息

期刊

JACS

标题

A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing

作者

Ke Xue, Chao Wang, Jiaxin Wang, Shuyi Lv, Boyi Hao, Chunlei Zhu, Ben Zhong Tang

摘要

Sensing temperature at the subcellular level is of great importance for the understanding of miscellaneous biological processes. However, the development of sensitive and reliable organic fluorescent nanothermometers remains challenging. In this study, we report the fabrication of a novel organic fluorescent nanothermometer and study its application in temperature sensing. First of all, we synthesize a dual-responsive organic luminogen that can respond to the molecular state of aggregation and environmental polarity. Next, natural saturated fatty acids with sharp melting points as well as reversible and rapid phase transition are employed as the encapsulation matrix to correlate external heat information with the fluorescence properties of the luminogen. To apply the composite materials for biological application, we formulate them into colloidally dispersed nanoparticles by a technique that combines in situ surface polymerization and nanoprecipitation. As anticipated, the resultant zwitterionic nanothermometer exhibits sensitive, reversible, reliable, and multiparametric responses to temperature variation within a narrow range around the physiological temperature (i.e., 37 °C). Taking spectral position, fluorescence intensity, and fluorescence lifetime as the correlation parameters, the maximum relative thermal sensitivities are determined to be 2.15% °C–1, 17.06% °C–1, and 17.72% °C–1, respectively, which are much higher than most fluorescent nanothermometers. Furthermore, we achieve the multimodal temperature sensing of bacterial biofilms using these three complementary fluorescence parameters. Besides, we also fabricate a cationic form of the nanothermometer to facilitate efficient cellular uptake, holding great promise for studying thermal behaviors in biological systems.

原文链接

https://pubs.acs.org/doi/10.1021/jacs.1c04597

在线咨询
ONLINE CONSULTING
电话咨询
PHONE CONSULTING

010-82449939