当前位置: 首页 > 学术作品
Ammonium Bicarbonate Significantly Accelerates the Microdroplet Reactions of Amines with Carbon Dioxide
时间:2022-03-04 14:03:26
作品信息

期刊

Analytical Chemistry

标题

Ammonium Bicarbonate Significantly Accelerates the Microdroplet Reactions of Amines with Carbon Dioxide

作者

Lulu Feng, Xinchi Yin, Siyuan Tan, Chang Li, Xiaoyun Gong, Xiang Fang, and Yuanjiang Pan

摘要

The reactions between amines and carbon dioxide (CO2) are among the most commonly used and important carbon fixation reactions at present. Microdroplets generated by electrospray ionization (ESI) have been proved to increase the conversion ratio (RC) of amines. In this work, we confirmed that the presence of ammonium bicarbonate (NH4HCO3) in ESI microdroplets significantly increased the RC of amines. The RC went up remarkably with the increase in the concentration of NH4HCO3 from 0.5 to 20 mM. The RC of N,N-dibutyl-1,3-propanediamine (DBPA) reached 93.7% under 20 mM NH4HCO3, which was significantly higher than previous reports. The rise in RC became insignificant when the concentration of NH4HCO3 was increased beyond 20 mM. Further investigations were made on the mechanism of the phenomenon. According to the results, it was suggested that NH4HCO3 decomposed into CO2 and formed microbubbles within the microdroplets of ESI. The microbubbles acted as direct internal CO2 sources. The conversion reactions occurred at the liquid–gas interface. The formation of CO2 microbubbles remarkably increased the total area of the interface, thus promoting the conversion reactions. 13C-labeled experiments confirmed that NH4HCO3 acted as an internal CO2 source. Factors that influenced the RC of the reaction were optimized. Pure water was proved to be the optimal solvent. Lower temperature of the mass spectrometer’s entrance capillary was beneficial to the stabilization of the product carbamic acids. The sample flow rate of ESI was crucial to the RC. It determined the initial sizes of the microdroplet. Lower flow rates ensured higher RC of amines. The present work implied that NH4HCO3 could be a superior medium for CO2 capture and utilization. It might offer an alternative choice for future CO2 conversion research studies. In addition, our study also provided evidence that NH4HCO3 decomposed and generated microbubbles in the droplets during ESI. Attention should be paid to this when using NH4HCO3 as an additive in mass spectrometry-based analysis.

原文链接

https://pubs.acs.org/doi/10.1021/acs.analchem.1c03954

在线咨询
ONLINE CONSULTING
电话咨询
PHONE CONSULTING

010-82449939