当前位置: 首页 > 学术作品
Regulation of iron and cadmium uptake in rice roots by iron(iii) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation
时间:2022-11-14 16:13:25
作品信息

期刊

Environment Science Nano

标题

Regulation of iron and cadmium uptake in rice roots by iron(iii) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation

作者

Guoyong Huang, Dandan Pan, Milan Wang, Songxiong Zhong, Yingmei Huang, Fangbai Li, Xiaomin Li and  Baoshan Xing

摘要

The application of iron oxide nanoparticles (FeNPs) can alleviate cadmium (Cd) accumulation in rice. However, the effect of FeNPs on the interaction between Fe and Cd during uptake in rice roots remains poorly understood. Herein, Fe2O3 NPs were applied to rice in a hydroponic experiment under Cd stress. The application of FeNPs significantly decreased the Cd concentrations in roots and shoots and reduced the Fe concentration in shoots. Fe plaque formation was significantly enhanced either by FeNPs or Cd stress; however, the ratios of CdFe plaque/Cdwhole plant and CdFe plaque/FeFe plaque indicated that the contribution of Fe plaque to alleviating Cd uptake was limited. Gene expression quantification suggested that the presence of FeNPs inhibited the uptake of Fe2+ and Cd2+via OsNRAMP5, OsCd1, OsIRT1 and OsIRT2 transporters, but it facilitated the uptake of Fe(III) via the OsYSL15 transporter. TEM-EDS evidenced the accumulation of FeNP aggregates in both the symplast and apoplast of roots, particularly in the symplast, which strongly restricted the root-to-shoot translocation of Cd and Fe, resulting in the Fe accumulation in shoots being even lower than those without FeNPs. This study provides a comprehensive understanding of the regulation mechanisms of Fe and Cd uptake in rice roots by FeNPs from the perspectives of Fe plaque, gene expression, and NP accumulation. The finding that FeNP accumulation in rice roots restricted Fe translocation to the shoot suggested that further investigation needs to optimize the distribution of Fe to rice grains during FeNP application.

原文链接

https://pubs.rsc.org/en/content/articlelanding/2022/en/d2en00487a

在线咨询
ONLINE CONSULTING
电话咨询
PHONE CONSULTING

010-82449939