期刊
Nano Energy
标题
High powered output flexible aerogel triboelectric nanogenerator under ultrahigh temperature condition
作者
Jiali Hu, Ying Qian, Fayun Wei, Jiamu Dai, Dawei Li, Guangyu Zhang, Hailou Wang, Wei Zhang
摘要
Triboelectric nanogenerators (TENGs) have emerged as promising devices for harvesting low-frequency energy, but its application in high-temperature environments is limited. In this article, a flexible high-temperature resistant fiber substrate material was developed using needled felt and silicon aerogel. This material demonstrated exceptional resistance, withstanding exposure to a butane flame at approximately 1300 ℃ for a minimum of 10 min without experiencing burn-through. Following the application of electrodes and protective encapsulating, a high-temperature resistant silicon aerogel and fiber felts based triboelectric nanogenerator (HTFs-TENG) was successfully created. In addition, we achieved remarkable enhancements in the electrical output performance of the HTFs-TENG by precisely regulating its dielectric properties, resulting in an impressive increase in peak voltage from 17 V to 135 V. The current output increased from 1.4 μA to 6 μA. The HTFs-TENG demonstrated remarkable adaptability, operating effectively at temperatures as high as 275 ℃ and as low as approximately − 75 ℃. Moreover, it showcased an instantaneous power density output of 31.9 mW/m2 under a 100 MΩ resistance load. The HTFs-TENG displayed impressive electrical signal response capabilities at ultralow frequencies (≤1 Hz) across various temperatures and frequencies, positioning it as an ideal self-powered vibration sensor and temperature sensor for diverse generator applications.
原文链接
https://www.sciencedirect.com/science/article/abs/pii/S2211285523010662